INDUSTRIAL AND SYSTEMS ENGINEERING

Program Information
The Department of Industrial and Systems Engineering offers the Master of Engineering degree, the Master of Science degree, the Engineer degree, and the Doctor of Philosophy degree. Complete descriptions of the minimum requirements for the M.E., M.S., Engineer, and Ph.D. degrees are provided in the Graduate Degrees (http://gradcatalog.ufl.edu/graduate/degrees/) section of this catalog.

Master of Science (M.S.) Program
Admission to the Master of Science program is open to students with an undergraduate degree in engineering, mathematics, statistics, computer science, physics, quantitative management, or similar field. The M.S. degree does not require a thesis, although a student interested in pursuing research or possibly continuing their education beyond a master's degree is encouraged to write one.

Master of Engineering (M.E.) Program
Students seeking admission to the Master of Engineering program must have a bachelor's degree from an ABET-accredited curriculum or have taken sufficient articulation coursework to meet the minimum requirements specified by ABET. The M.E. degree does not require a thesis and is generally considered a terminal degree.

Ph.D. Program
The doctoral program in Industrial and Systems Engineering covers the areas of data analytics, health systems engineering, human-systems engineering, operations research (including deterministic and stochastic processes), risk management and financial engineering, and supply chain and logistics systems. Application areas include energy systems, financial engineering, healthcare, manufacturing systems, security systems, supply chain management, and transportation systems.

For more information, please see our website: http://www.ise.ufl.edu.

Degrees Offered

Degrees Offered with a Major in Industrial and Systems Engineering
- Doctor of Philosophy
 - without a concentration
 - concentration in Quantitative Finance
- Master of Engineering
 - without a concentration
 - concentration in Data Analytics
 - concentration in Engineering Management
 - concentration in Human Systems Engineering
 - concentration in Operations Research
 - concentration in Productions and Service Operations
- Master of Science
 - without a concentration
 - concentration in Data Analytics
 - concentration in Engineering Management
 - concentration in Human Systems Engineering

Requirements for these degrees are given in the Graduate Degrees (http://gradcatalog.ufl.edu/graduate/degrees/) section of this catalog.

Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGN 5949</td>
<td>Practicum/Internship/Cooperative Work Experience</td>
<td>1-6</td>
</tr>
<tr>
<td>EGN 6640</td>
<td>Entrepreneurship for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>EGN 6913</td>
<td>Engineering Graduate Research</td>
<td>0-3</td>
</tr>
<tr>
<td>EIN 5249</td>
<td>Human Factors in System Design</td>
<td>3</td>
</tr>
<tr>
<td>EIN 5501</td>
<td>Health Systems Engineering Models and Methods</td>
<td>3</td>
</tr>
<tr>
<td>EIN 6176</td>
<td>Advanced Quality Management and Engineering for Business Processes</td>
<td>3</td>
</tr>
<tr>
<td>EIN 6212</td>
<td>Loss Assessment and Control</td>
<td>3</td>
</tr>
<tr>
<td>EIN 6215</td>
<td>System Safety Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EIN 6216</td>
<td>Occupational Safety Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EIN 6357</td>
<td>Advanced Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>EIN 6422</td>
<td>Manufacturing Management</td>
<td>3</td>
</tr>
<tr>
<td>EIN 6510</td>
<td>Principles of Manufacturing Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EIN 6905</td>
<td>Special Problems</td>
<td>1-6</td>
</tr>
<tr>
<td>EIN 6910</td>
<td>Supervised Research</td>
<td>1-5</td>
</tr>
<tr>
<td>EIN 6918</td>
<td>Graduate Seminar</td>
<td>1</td>
</tr>
<tr>
<td>EIN 6940</td>
<td>Supervised Teaching</td>
<td>1-5</td>
</tr>
<tr>
<td>EIN 6971</td>
<td>Research for Master's Thesis</td>
<td>1-15</td>
</tr>
<tr>
<td>EIN 7933</td>
<td>Special Problems</td>
<td>1-6</td>
</tr>
<tr>
<td>EIN 7979</td>
<td>Advanced Research</td>
<td>1-12</td>
</tr>
<tr>
<td>EIN 7980</td>
<td>Research for Doctoral Dissertation</td>
<td>1-15</td>
</tr>
<tr>
<td>ESI 5471</td>
<td>Optimization for Financial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ESI 5613</td>
<td>Data Analytics for ISE</td>
<td>3</td>
</tr>
<tr>
<td>ESI 5687</td>
<td>Machine Learning for Financial Risk Management</td>
<td>4</td>
</tr>
<tr>
<td>ESI 6314</td>
<td>Deterministic Methods in Operations Research</td>
<td>4</td>
</tr>
<tr>
<td>ESI 6323</td>
<td>Models for Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6325</td>
<td>Applied Probability Methods in Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6341</td>
<td>Intro to Stochastic Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6346</td>
<td>Decision Making under Uncertainty</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6352</td>
<td>Financial Optimization Case Studies</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6355</td>
<td>Decision Support Systems for Industrial and Systems Engineers</td>
<td>4</td>
</tr>
<tr>
<td>ESI 6417</td>
<td>Linear Programming and Network Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6420</td>
<td>Fundamentals of Mathematical Programming</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6448</td>
<td>Discrete Optimization Theory</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6492</td>
<td>Global Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6529</td>
<td>Digital Simulation Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6546</td>
<td>Stochastic Modeling and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6552</td>
<td>Systems Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6553</td>
<td>Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6555</td>
<td>Systems Management</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6616</td>
<td>Data Analytics for System Monitoring</td>
<td>3</td>
</tr>
<tr>
<td>ESI 6617</td>
<td>High-Dimensional Data Analytics</td>
<td>3</td>
</tr>
<tr>
<td>FIN 5490</td>
<td>Stochastic Calculus in Financial Engineering</td>
<td>4</td>
</tr>
</tbody>
</table>
FIN 5776 Numerical Methods in Financial Engineering 4
FIN 5778 Introduction to Financial Technology 3
FIN 6951 Master's Project in Financial Engineering 3

College of Engineering Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 5354L</td>
<td>Semiconductor Device Fabrication Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>EEE 5776</td>
<td>Applied Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>EEE 6778</td>
<td>Applied Machine Learning II</td>
<td>3</td>
</tr>
<tr>
<td>EGN 5215</td>
<td>Machine Learning Applications in Civil Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EGN 5216</td>
<td>Machine Learning for Artificial Intelligence Systems</td>
<td>3</td>
</tr>
<tr>
<td>EGN 5442</td>
<td>Programming for Applied Data Science</td>
<td>3</td>
</tr>
<tr>
<td>EGN 6216</td>
<td>Artificial Intelligence Systems</td>
<td>3</td>
</tr>
<tr>
<td>EGN 6217</td>
<td>Applied Deep Learning</td>
<td>3</td>
</tr>
<tr>
<td>EGN 6446</td>
<td>Mathematical Foundations for Applied Data Science</td>
<td>3</td>
</tr>
<tr>
<td>EGN 6640</td>
<td>Entrepreneurship for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>EGN 6642</td>
<td>Engineering Innovation</td>
<td>3</td>
</tr>
<tr>
<td>EGN 6913</td>
<td>Engineering Graduate Research</td>
<td>0-3</td>
</tr>
<tr>
<td>EGN 6933</td>
<td>Special Topics</td>
<td>1-3</td>
</tr>
<tr>
<td>EGN 6937</td>
<td>Engineering Fellowship Preparation</td>
<td>0-1</td>
</tr>
<tr>
<td>EGS 6012</td>
<td>Research Methods in Engineering Education</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6020</td>
<td>Research Design in Engineering Education</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6039</td>
<td>Engineering Leadership</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6050</td>
<td>Foundations in Engineering Education</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6051</td>
<td>Instructional Design in Engineering Education</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6054</td>
<td>Cognition, Learning, and Pedagogy in Engineering Education</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6056</td>
<td>Learning and Teaching in Engineering</td>
<td>1</td>
</tr>
<tr>
<td>EGS 6085</td>
<td>Advanced Engineering Educational Technology</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6101</td>
<td>Divergent Thinking</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6626</td>
<td>Fundamentals of Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6628</td>
<td>Advanced Practices in Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6629</td>
<td>Agile Project Management for Engineers and Scientists</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6681</td>
<td>Advanced Engineering Leadership</td>
<td>3</td>
</tr>
<tr>
<td>EGS 6930</td>
<td>Engineering Education Seminar</td>
<td>1</td>
</tr>
<tr>
<td>EGS 6940</td>
<td>Preparation for Engineering Education Practicum</td>
<td>1</td>
</tr>
<tr>
<td>EGS 6949</td>
<td>Research to Practice Experience in Engineering Education</td>
<td>1-3</td>
</tr>
<tr>
<td>EGS 6971</td>
<td>Research for Master's Thesis</td>
<td>1-12</td>
</tr>
<tr>
<td>EGS 7979</td>
<td>Advanced Research</td>
<td>1-12</td>
</tr>
<tr>
<td>EGS 7980</td>
<td>Research for Doctoral Dissertation</td>
<td>1-12</td>
</tr>
<tr>
<td>ESI 6900</td>
<td>Principles of Engineering Practice</td>
<td>1-4</td>
</tr>
</tbody>
</table>

Student Learning Outcomes

Industrial and systems engineering (PHD)

SLO 1 Knowledge
Basic proficiency in the core methodological areas of operations research and industrial engineering, including mathematical modeling and optimization theory and algorithms

SLO 2 Professional Behavior

Ability to effectively and professionally communicate industrial engineering concepts and information in lecture format

SLO 3 Skills
Ability to assimilate foundational material, describe important research contributions, and independently plan future research activities that advance the state-of-the-art in the student’s field of expertise

SLO 4 Knowledge
Contribution of significant new research to the student’s field of expertise, either in theoretical foundations or practical applications

Industrial & Systems Engineering (Me & MS)

SLO 1 Knowledge
Proficiency in the core methodological areas of operations research and industrial engineering, including mathematical modeling and analysis of business problems

SLO 2 Skills
Ability to apply methodology in the customized development of solutions for business problems, and the use of information technologies for solution delivery

SLO 3 Professional Behavior
Ability to effectively and professionally communicate industrial engineering concepts and information in written and oral forms